CIRCOLAZIONE IDRICA NELLE ZONE DI FRATTURA

A cura di V. Francani e C. Rampolla <u>Vincenzo.francani@polimi.it</u> <u>carla.rampolla@gmail.com</u>

Indice

1	PREN	ЛESSA	2
2	DAM	AGE ZONE	2
	2.1	STRUTTURA 1	2
	2.2	STRUTTURA 2	5
	2.3	STRUTTURA 3	7
	2.4	STRUTTURA 4	10
	2.5	STRUTTURA 5	11
3	BIBLI	OGRAFIA	14

1 PREMESSA

La circolazione delle acque sotterranee negli ammassi rocciosi è condizionata dalla distribuzione della permeabilità. Lungo le zone di faglia si riscontrano livelli impermeabili (gouge) in corrispondenza della faglia, cioè nel cosiddetto fault core, lateralmente ai quali la permeabilità è talora molto elevata. Infatti nelle zone di frattura (damage zones) le discontinuità hanno apertura spesso centimetrica e si intersecano fittamente, con elevata interconnettività. Queste due proprietà favoriscono una facile circolazione idrica lungo le damage zones (DZ).

Il flusso idrico avviene con modalità diverse secondo la struttura delle DZ, e le conseguenze per le caratteristiche tecniche dell'ammasso roccioso si differenziano ampiamente secondo tale struttura. E' quindi opportuno esaminare sia le diverse strutture della DZ sia le conseguenze per il flusso idrico e la stabilità che ciascuna di esse generalmente comporta.

2 DAMAGE ZONE

Di seguito verranno descritti cinque diversi tipi di damage zone.

2.1 STRUTTURA 1

E' quella più comune, con una zona centrale A (fault core) con giacitura caotica delle discontinuità, con molte strutture lenticolari e presenza di "gouge", una damage zone (B) intensamente fratturata, e una zona esterna (C) detta host zone in cui prevalgono le discontinuità primarie sulle fratture. Si osservano nella zona C deformazioni solo nei livelli più plastici (Figg. 1 e 2).

Fig. 1 – schema struttura 1

Fig. 2 – schema struttura 1

Nelle figure seguenti sono rappresentati degli esempi reali di struttura 1.

Fig. 3 - Immagine di un fault core al centro di due DZ

Fig. 4 - Damage zone con fratture in diverse direzioni e venute d'acqua lungo le discontinuità più aperte

Fig. 5 - Particolare della damage-zone della figura precedente con aperture centimetriche

Fig. 6 - Fault core (a sinistra) e damage zone con evidenti aperture centimetriche e con un sistema predominante di discontinuità aperte

2.2 STRUTTURA 2

La seconda tipologia di damage zone risulta costituita da un ammasso intersecato da più sistemi di faglia, alcune con un proprio fault core (Fig. 7).

Fig. 7 – schema struttura 2

Nelle figure seguenti sono rappresentati degli esempi reali di struttura 2.

FAULT CORE Fig. 8 - Damage zone con intersezione di vari sistemi di fratture

Fig 9. - Damage zone in rocce carbonate (calcari dolomitici), in cui si manifestano anche cavità di dissoluzione lungo le discontinuità più aperte. In rosso è indicato il fault core

Fig. 10 - Un altro caso in cui la DZ è caratterizzata dall'incrociarsi di fitti sistemi di discontinuità.

Fig. 11 - Gouge e damage zone con più di un sistema di discontinuità , che hanno luogo ad aperture elevate

2.3 STRUTTURA 3

Nella struttura 3 la DZ è caratterizzata da strette a pieghe, che danno luogo a una dilatazione delle aperture (soprattutto nella zona della cerniera) e allo scorrimento della roccia lungo i giunti e gli strati.

Fig. 12 – schema struttura 3

Nelle figure seguenti sono rappresentati degli esempi reali di struttura 3.

Fig. 13 - In presenza di pieghe le aperture nella DZ aumentano visibilmente soprattutto nella zona di cerniera delle pieghe (*1). Le discontinuità ortogonali alla stratificazione si allargano per effetto della trazione esercitata dal piegamento (*2)

Fig. 14 - Sistemi di fratture che si intersecano nel nucleo della piega, con evidente aumento dell'apertura e dell'interconnettività.

Fig. 15 - Il nucleo delle pieghe è caratterizzato dalla sovrapposizione di più sistemi di discontinuità, elevata apertura e interconnettività.

Fc + (share e fratture + damage)

Fig. 16 – a) Nelle zone in cui prevalgono gli scorrimenti le aperture vengono incrementate dalla deformazione. b) Particolare che evidenzia la dilatazione delle discontinuità dovuta allo scorrimento differenziale lungo le superfici di rottura.

2.4 STRUTTURA 4

In presenza di lenti di materiale più resistente, si verifica lo scorrimento laterale della roccia e la sua espansione, con dilatazione delle discontinuità.

Fig. 18 – schema struttura 4

Nelle figure seguenti sono rappresentati degli esempi reali di struttura 4.

Fig. 19 - La presenza di scaglie evidenzia lo scorrimento delle rocce circostanti, con produzione di livelli a fratturazione minuta e dilatazione delle aperture della DZ

Fig. 20 - In rocce calcaree le aperture nell'area che circonda la lente più resistente sono in generale più accentuate

2.5 STRUTTURA 5

Quando le superfici di frattura all'interno della damage zone sono curvilinee e si raccordano lungo il contatto con il fault core (flower fault), i movimenti fra un cuneo e l'altro determinano l'allargamento delle discontinuità.

Fc + damage con flower fault

Fig. 21 – schema struttura 5

Fig. 22 - Flower fault in rocce carbonate, nelle quali si osserva l'accentuata apertura delle discontinuità con venute d'acqua.

Fig. 23 - Particolare di faglia a fiore (Aprica)

3 **BIBLIOGRAFIA**

Andrew M. McCaig (1988). Deep fluid circulation in fault zones. doi: 10.1130/0091-7613(1988)016<0867:DFCIFZ>2.3.CO;2v. 16 no. 10 p. 867-870

López D., Smith L. (1995). Fluid Flow in Fault Zones: Analysis of the Interplay of Convective Circulation and Topographically Driven Groundwater Flow

Scesi L., Gattinoni P. (2009). Water circulation in rocks. Springer 2009, p. 172, ISBN: 9048124166.